# Overview

The limbic system<sup>1)</sup> is a set of structures located deep within the brain that play an important role in several fundamental processes, such as emotion, behavior, motivation, memory formation and long-term memory storage.

This structure is especially linked with emotion and the way information is processed both consciously and unconsciously.

Primarily comprised of the hypothalamus, amygdala, hippocampus, cingulate gyrus and fornix, it aids in directing internal systems related to physiological responses to external stimuli—such as releasing hormones or activating endorphins when feeling overwhelmed or anxious—and serves as a major link between sensory input and motor output.

This framework also plays a significant part in forming new memories based on conscious experiences while providing the necessary foundation for their retrieval later on.

## Hypothalamus

The hypothalamus<sup>2)</sup>, a complex of nuclei located at the base of the brain, plays an important role in regulating and controlling numerous bodily functions.

It serves as the primary link between endocrine and autonomic nervous systems and is responsible for integrating homeostatic activities, allowing it to maintain normal physiological conditions. Several hypothalamic areas are involved with higher order functions such as motivation, reward circuitry, and emotional states.

The hypothalamus contains specialized nuclei that control the body's physiology such as hunger, thirst, sleep/wake cycle, body temperature homeostasis, reproductive behavior and metabolism.

Furthermore, due to its connection with the pituitary gland via neural pathways it facilitates systemic communication by releasing hormones into the circulatory system – acting both directly on target tissues as well as indirectly through hormonal processes.

In conclusion, it is clear that due to its involvement in a vast number of essential functions related to physical and mental health, proper functioning of the hypothalamus is essential for maintaining homeostasis in humans.

## Amygdalas

The amygdala<sup>3)</sup> are a small pair of almond-shaped structures located deep in the medial temporal lobe of the brain. They play an essential role in modulating fear, reward processing, aggression and other emotions. In addition to these functions, they are also involved heavily in memory formation and decision-making.

The amygdala is composed of several nuclei, each with its own specific set of connections and roles.

Interactions between the various nuclei then give rise to complex integrated responses including neurotransmitter release and behavior modification. This renders the amygdala to be an integral part of any emotion regulation system. Its importance in our daily functioning cannot be overstated as it has been necessary for humans to survive and thrive throughout history.

#### Hippocampus

The hippocampus<sup>4)</sup> is a major component of the brain involved in both short-term and long-term memory. It resides deep within the temporal lobe, which feeds it signals from other regions of the brain.

Structurally, the hippocampus is organized into several internal subregions that are thought to be responsible for different types of memories and learning processes. Neurochemical signals cause cascades of neuron activation throughout the hippocampus during learning and behaviorally relevant tasks.

It is also known to play an important role in spatial navigation as well as overall emotion regulation. Damage or dysfunction within this structure has been linked to impairments ranging from mild forgetfulness to more severe forms of dementia, such mental illnesses like depression and Alzheimer's disease.

## **Cingulate Gyrus**

The cingulate gyrus<sup>5)</sup> is a prominent component of the brain which lies at the inner margin of the cerebral cortex in both hemispheres. Situated between the corpus callosum and hippocampus, this structure is involved in many cognitive functions such as emotion regulation, motivation, reward processing, decision making and social behavior.

The cingulate gyrus plays an important role in response inhibition, inhibition of inappropriate actions or thoughts and conflict resolution.

In addition to these cognitive roles that shape personality traits, such as impulse control and affective regulation; it also regulates autonomic responses like heart rate variability. Neuroimaging studies show that it participates widely in various syndromes including schizophrenia, anxiety disorders, Alzheimer's disease and autism spectrum disorder.

Its functional organization depends on varied connections with cortical subregions associated with different cognitive capabilities making this highly specialized area a critical site for normal functioning.

### Fornix

The fornix is a C-shaped structure comprised of white matter fibers found in the brain and important in memory formation.

It is composed of two parts, the anterior limb and posterior limb, which connect the hippocampus to

The fornix has been linked to multiple functions, including integrating and modulating sensory, emotional, autonomous outflow activated by cholinergic and noradrenergic systems. Additionally, severe disruption of the fornix can affect memory recall or encoding.

This has been observed through damage of the axons within its pathways or destruction of neurons in its target regions.

Finally, impaired neural connectivity within the fornix system secondary to age-related degeneration has been shown significantly correlated with cognitive decline in Aging patients' brains.

- <sup>1)</sup> Limbic systemWikipedia
- <sup>2)</sup> HypothalamusWikipedia
- <sup>3)</sup> AmygdalaWikipedia
- <sup>4)</sup> HippocampusWikipedia
- <sup>5)</sup> Cingulate cortexWikipedia

From: https://dokuwiki.3dd.de/ - Integral Eye Movement Therapy (IEMT) Wiki

Permanent link: https://dokuwiki.3dd.de/limbic\_system?rev=1672217838

Last update: 2022/12/28 09:57

